The following are from Gallian, Chapter 3 (6th edition).

In this solution set, \(|a|\) denotes the order of the element \(a\) (i.e. \(\text{ord}(a)\)).

- **# 1:**
 1. **\(\mathbb{Z}_{12}\):**
 * \(|\mathbb{Z}_{12}| = 12;\)
 * \(0| = 1; \ 1| = 12; \ 2| = 6; \ 3| = 4; \ 4| = 3; \ 5| = 12; \ 6| = 2; \ 7| = 12; \ 8| = 3; \ 9| = 4;\)
 * \(10| = 6; \ 11| = 12.\)
 2. **\(U(10)\):**
 * \(|U(10)| = \phi(10) = \phi(2 \cdot 5) = (1)(4) = 4;\)
 * \(1| = 1; \ 3| = 4; \ 7| = 4; \ 9| = 2.\)
 3. **\(U(12)\):**
 * \(|U(12)| = \phi(12) = \phi(2^2 \cdot 3) = (2)(2) = 4;\)
 * \(1| = 1; \ 5| = 2; \ 7| = 2; \ 11| = 2.\)
 4. **\(U(20)\):**
 * \(|U(20)| = \phi(20) = \phi(2^2 \cdot 5) = (2)(4) = 8;\)
 * \(1| = 1; \ 3| = 4; \ 7| = 4; \ 9| = 2; \ 11| = 2; \ 13| = 4; \ 17| = 4; \ 19| = 2.\)
 5. **\(D_4\):**
 * \(|D_4| = 8;\)
 * \(R_0| = 1; \ R_{60}| = 4; \ R_{180}| = 2; \ R_{270}| = 4; \ H| = 2; \ V| = 2; \ D| = 2; \ D'| = 2.\)

- **Observations:** The order of every element divides the order of the group.

- **# 2:**
 1. In \(\mathbb{Q}\), we have \(\left\{\frac{1}{2}\right\} = \{0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2, \pm \frac{5}{2}, \ldots\}\)
 2. In \(\mathbb{Q}^*\), we have \(\left\{\frac{1}{2}\right\} = \{\ldots \frac{1}{2^n}, \ldots, \frac{1}{2}, 1, 2, 4, 8, ..., 2^n, \ldots\}\)

- **# 3:**
 1. In \(\mathbb{Q}\), \(0| = 1.\) All other elements have infinite order.
 2. In \(\mathbb{Q}^*\), \(1| = 1,\) and \(-1| = 2.\) All other elements have infinite order.

- **# 4:** Prove that in any group, an element and its inverse have the same order.
 1. Seeking a contradiction, suppose that this is not true. That is, suppose that there are elements \(a\) and \(a^{-1}\) such that \(|a| = n\) and \(|a^{-1}| = m\), with \(n\) and \(m\) positive integers such that \(n \neq m.\)
 2. Without loss of generality, suppose also that \(m < n.\) Then \(e = e \cdot e = (a^n) \cdot ((a^{-1})^m) = a^{n-m}.\) The consequence that \(a^{n-m} = e\) implies that \(n\) is not the order of \(a,\) contradicting our assumption.
 3. We conclude that \(n = m.\)

- **# 18:** If \(H\) and \(K\) are subgroups of \(G,\) show that \(H \cap K\) is a subgroup of \(G.\)
 1. We use the Two-Step Subgroup Test.
 2. Suppose that \(a, b \in H \cap K.\) That is, \(a, b \in H\) and \(a, b \in K.\) Since \(H\) and \(K\) are subgroups of \(G,\) we know that \(ab \in H\) and \(ab \in K.\) But this means that \(ab \in H \cap K\) as desired.
2. Suppose that \(a \in H \cap K \). That is, \(a \in H \) and \(a \in K \). Since \(H \) and \(K \) are subgroups of \(G \), we know that \(a^{-1} \in H \) and \(a^{-1} \in K \). But this means that \(a^{-1} \in H \cap K \) as desired.

Thus, \(H \cap K \) is a subgroup.

- # 23:
 - Find the centralizer of each member of \(G \).

 * \(C(1) = \{G\} \); \(C(2) = \{1, 2, 5, 6\} \); \(C(3) = \{1, 3, 5, 7\} \); \(C(4) = \{1, 4, 5, 8\} \); \(C(5) = \{G\} \); \(C(6) = \{1, 2, 5, 6\} \); \(C(7) = \{1, 3, 5, 7\} \); \(C(8) = \{1, 4, 5, 8\} \).
 - Find \(Z(G) \).
 * \(Z(G) = \{1, 5\} \).
 - Find the order of each element of \(G \).
 * \(|1| = 1\); \(|2| = 2\); \(|3| = 4\); \(|4| = 2\); \(|5| = 2\); \(|6| = 2\); \(|7| = 4\); \(|8| = 2\).
 - Observations: The order of every element divides the order of the group.

- # 26: If \(H \) is a subgroup of \(G \), prove that \(C(H) \) is a subgroup of \(G \).
 - We use the Two-Step Subgroup Test. Let \(x, y \in C(H) \). Then, for all \(h \) in \(H \),

\[
\begin{align*}
h(xy) &= (hx)y \\
 &= (xh)y \\
 &= x(hy) \\
 &= x(yh) \\
 &= (xy)h,
\end{align*}
\]

so \(xy \in C(H) \). Also,

\[
\begin{align*}
hx^{-1} &= exh^{-1} \\
 &= (x^{-1}x)hx^{-1} \\
 &= x^{-1}(xh)x^{-1} \\
 &= x^{-1}(hx)x^{-1} \\
 &= x^{-1}h(xx^{-1}) \\
 &= x^{-1}he \\
 &= x^{-1}h
\end{align*}
\]

so \(x^{-1} \in C(H) \).

This completes the proof.

- # 27: Must the centralizer of an element of a group be Abelian?
 - No. Consider # 17, where \(C(5) = \{G\} \). The group \(G \) is not Abelian, since \(8 = 2 \cdot 3 \neq 3 \cdot 2 = 4 \).

- # 28: Must the center of a group be Abelian?
 - Yes. Let \(G \) be a group and let \(x, y \in Z(G) \). By definition, if \(x \) is in \(Z(G) \), then \(xy = gx \) for all \(y \in G \). Since \(y \in Z(G) \subset G \), this means that \(xy = yx \).

- # 29: Let \(G \) be an Abelian group with identity \(e \) and let \(n \) be some fixed integer. Prove that the set of all elements of \(G \) that satisfy the equation \(x^n = e \) is a subgroup of \(G \).
Let \(H \) denote the subset of \(G \) satisfying \(x^n = e \). We use the Two-Step Subgroup Test.

1. Let \(x \) and \(y \) be in \(H \). Thus \(x^n = y^n = e \) and

\[
(xy)^n = xy \cdot xy \cdot \cdots \cdot xy = x^n y^n \quad \text{(since \(G \) is abelian)}
\]

\[
= e \cdot e = e.
\]

Therefore \(xy \in H \) as desired.

2. Let \(x \in H \). Then \(x^n = e \) and thus \((x^{-1})^n = (x^n)^{-1} = e^{-1} = e \). Therefore \(x^{-1} \in H \), and \(H \) is a subgroup of \(G \).

- An example of a group \(G \) in which the set of all elements of \(G \) that satisfy \(x^2 = e \) does not form a subgroup of \(G \):

 * Consider the dihedral group \(D_3 \) from HW \#2. Then \(| F_T | = 2 \) and \(| F_L | = 2 \), but \(| F_T F_L | = | R_{120} | = 3 \).